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ABSTRACT 
This paper presents a new approach to the investigation of underground cavities. Our technique is 
based on the refraction seismic method. We have studied a two-dimensional, two-layer geological 
model. In our model, the lower seismic velocity layer is situated above the higher seismic velocity 
layer, with a circular cavity positioned within the upper layer. We have investigated the influence 
exerted by the cavity on the first arrivals of seismic waves. The obtained traveltimes are solutions 
of the eikonal equation and are presented using the time-distance graph. All refracted waves encoun-
tering the cavity have to circumvent it, as it represents an impediment to the propagation of seismic 
energy. This circumvention causes delays in the first arrivals of the seismic waves at the surface as 
compared to traveltimes with no cavity present. These delays create a characteristic shape of the 
time-distance graph, characterized by the peak point in which the plot line has a discontinuous 
change. Using this graph and analysing the delays of the first arrivals, we have derived expressions 
for determining both the position and size of the circular cavity. The practical application of the 
derived relations has been tested on a model test site built in a natural rock setting. This simple 
method indicates the presence of the cavity. The accuracy of the calculated cavity parameters: the 
horizontal position x, the depth z and cavity radius r depends on the geophone spacing. For geo-
phone spacing equal to or less than the cavity radius, the accuracy of the method is shown to be 
acceptable. The maximal estimated error is equal to a half geophone spacing. Finally, we have 
demonstrated that this method is also applicable in the detection of non-circular cavities.
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tion on the interaction between different types of seismic waves 
and the cavity itself. This interaction may also be studied using 
numerical modelling as well as experimentally at test sites built 
specifically for that purpose. However, as the dimensions of 
these test sites are substantially smaller than those of real geo-
logical structures, special attention needs to be devoted when 
applying these methods to real geological conditions (Grandjean 
and Leparoux 2004). Seismic behaviour depends on various fac-
tors, particularly on the nature of the seismic wave and on the 
ratio between the wavelength and cavity size. Depending on 
these factors, it has been shown that a cavity can act as a diffrac-
tion body (Baker et al. 1997) and that the phase velocity and 
attenuation characteristics of surface waves can be used to detect 
near-surface anomalies of various kinds (Park et al. 1998). 
Several research groups have studied practical applications of 
seismic methods for cavity and buried objects detection. 
Piwakowski et al. (1997a,b) and Gochioco (1990) applied the 
reflection seismic method for detecting old gypsum and coal 
mines. Herman et al. (2000) showed that Rayleigh waves are 
suitable for shallow object imaging. Grandjean (2006) studied 
subsurface object imaging by seismic P-wave tomography. Other 

INTRODUCTION
One of the most serious civil engineering problems found at 
construction sites is the occurrence of underground cavities. The 
threat of undetected cavity collapse can be catastrophic, requir-
ing a precise positioning of these cavities prior to the construc-
tion of dams, roads, tunnels, etc. (Musset and Khan 2000). 
Encountered cavities can be man-made, such as abandoned coal 
mines or natural, which are particularly frequent in karst regions. 
Cavities may vary greatly, not only in size and shape but also in 
their burial depth. 
	 During the past decade, different techniques (based on vari-
ous geophysical methods) have been developed for adequate 
cavity detection. Seismic methods are mostly based on the analy-
sis of P-wave reflection (Grandjean et al. 2002) and surface-
wave diffraction (Leparoux et al. 2000). Grandjean and Leparoux 
(2004) investigated the potential of several seismic methods for 
detecting cavities and buried objects. They focused their atten-
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researchers have mainly focused on theoretical aspects of the 
problem. Gelis et al. (2005) studied the interaction of seismic 
surface waves with shallow cavities using numerical modelling. 
Ganji et al. (1997) developed methods for detecting underground 
obstacles based on spectral analysis of surface waves (SASW). 
	 In this paper, we have investigated the application of the seis-
mic refraction method in researching underground cavities in a 
two-layer model. We have studied the influence of the cavity on 
the first arrivals of seismic waves. The traveltimes (presented in 
the time-distance (t – x) graph) were calculated by solving the 
eikonal equation. Application of the eikonal equation for the 
calculation of traveltimes began in the late 1980s and since then, 
different approaches have been proposed for 2D (Vidale 1988; 
Podvin and Lecomte 1991; Qin et al. 1992; Cao and Greenhalgh 
1994) and 3D cases (Vidale 1990; Sethian and Popovici 1999; 
Vanelle and Gajewski 2002). These methods are based on algo-
rithms implemented in Cartesian coordinates. Sun and Fomel 
(1998) implemented an eikonal solver in the trigonal 2D and the 
tetragonal 3D coordinates, while Alkhalifah and Fomel (2001) 
showed the advantages of using spherical coordinates. In addi-
tion to traveltime calculation Buske and Kästner (2004) devel-
oped the method that also calculates the amplitudes of the first 
arrivals. A comparative review of the different methods is given 
by Leidenfrost et al. (1999) and Kim (2002). 
	 In the first step, we have used Huygen’s principle to explain 
the circumvention of refracted waves around the cavity. The 
consequence of this circumvention is a delay of the first arrivals 
of seismic waves at the surface. Through the use of these delays, 
we have explained the shape of the t – x graph and we have 
derived equations that determine the position and the size of the 
circular cavity in a two-layer model. We have also shown the 
applicability of the method in the case of non-circular cavities. 
Our technique has been developed for models with a flat surface 
topography. Using static corrections, the influence of land sur-
face topography variations on first arrivals can be eliminated 
(Musset and Khan 2000). 
	 Finally, we have applied our method to experimental data. A 
test site built in a natural environment allowed us to investigate 
both the advantages and limitations of the developed method in 
real field conditions. A dry sand layer above a wet sand layer 
simulates a two-layer model, where the interface between the 
layers is defined by the level of the underground water. We have 
discussed the influence of various factors on the accuracy of the 
obtained cavity parameters (e.g., depth, size, etc.).

EIKONAL EQUATION 
In 2D, the eikonal equation has the following form:

	 (1)

where t = t(x, z) represents the traveltime at the point (x, z) and 
s(x, z) the slowness, which is defined as the reciprocal value of 
the velocity at point (x, z). The slowness distribution is known for 

all points of the 2D grid and the traveltimes are calculated for all 
grid points. The grid comprises N × N squares. In general, the 
basis of the method can be described as a finite-difference calcu-
lation of point-to-point traveltimes in the complete 2D grid. It is 
necessary to choose the appropriate algorithm to ensure that the 
first arrival condition is fulfilled. The applied algorithm, charac-
terized by high accuracy, is based on the expanding wavefronts 
method and was first introduced by Qin et al. (1992). The com-
plete mathematical theory of this method is given by Sethian 
(1996).

FIGURE 1

The first few steps in the traveltime calculation procedure. Black circles 

represent fixed points while the white circles represent the instantaneous 

wavefront. a) The traveltimes are calculated at points 1, 2 and 3 around 

the source 0. b) The traveltimes are calculated at points 4, 5 and 6 around 

the fixed point 3. c) The traveltimes are calculated at points 1, 7 and 8 

around the fixed point 4.
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The implemented algorithm 
The wave source is defined as the initial point with coordinate  
(0, 0). At this point the traveltime is t = 0 and we declare this 
point fixed. The fixed points are defined as those for which the 
associated traveltime can no longer be varied. The calculation 
proceeds by calculating the traveltime at three neighbouring 
points. These three points form the instantaneous wavefront. The 
traveltimes at all points of the instantaneous wavefront are then 
ordered by magnitude and the point with the lowest value is 
chosen. This point is now declared fixed and the traveltimes of 
the neighbouring points are computed. The calculation is repeat-
ed for all points that are not fixed points, as well as those that 
have not already been calculated. The values at the points will be 
updated if the previously calculated value exceeds the presently 
calculated value. The newly calculated points and the remaining 
points of the instantaneous wavefront now form the new instan-
taneous wavefront. The points at this new instantaneous wave-
front are again ordered by magnitude and the one with the lowest 
associated value is chosen as a fixed point. This procedure is 
repeated until the times at all points of the grid are calculated. 
The initial few steps in the calculation of the observed expanding 
wavefront are given in schematic form in Fig. 1. 
	 Three different extrapolation formulas are used to obtain the 
traveltimes. In the first step, the traveltime at points neighbouring 
the source of the wave are calculated using the linear extrapola-
tion: 

	 (2)

where h is the distance between neighbouring points and 
(s0 + si)/2 is the average value of the slowness between source 
point s0 and point si (Fig. 2a). For all other points, the following 
formulas are used (Fig. 2b): 

	
(3)

or (Fig. 2c): 

	
(4)

where in the both cases, t0 is the first arrival at the fixed point,  
t1 and t2 are already calculated traveltimes at the adjacent points 
and t3 is the value being calculated. The slowness s is the  
average value of the slowness at points 0, 1, 2 and 3; 
s =  (s0 +  s1 + s2 + s3)/4. 
	 Seismic energy does not propagate through the cavity. The 
velocity of the seismic wave in the cavity is zero and the slow-
ness tends to infinity. To avoid infinite values in the calcula-
tion, the velocity of the wave in the cavity has been defined as 
5 m/s. This approximation has a negligible effect on the accu-
racy, as the slowest seismic velocities are more than 50 times 
greater. 
	 Although the implemented algorithm is predominantly stable 
(Qin et al. 1992), the occurrence of negative values inside the 
square root in the extrapolation formulas is also possible. This 
instability is a consequence of extremely large jumps in seismic 
velocities at the edge of the cavity. The problem can be avoided 
through smoothing of the slowness model. We have used a 1D 
smoothing operator that is described and applied by Leidenfrost 
et al. (1999). 
	 For the (n+1)th iteration the smoothing operator is given by: 

	
(5)

The 1D smoothing operator is applied five times to both dimen-
sions.

FIGURE 2

Application of the extrapolation formulas. The black circles indicate the points with known traveltimes, while white circles indicate the points for which 

the traveltimes are being calculated. a) Scheme for extrapolation equation (2). b) Scheme for extrapolation equation (3). c) Scheme for extrapolation 

equation (4). 
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point. Shown in Fig. 4(b), z1 indicates the last unaffected ray of 
the refracted wave before the influence of the cavity becomes 
visible, while z2 indicates the first unaffected ray after the cavity 
influence has ceased. The rays z1 and z2 exit the surface at dis-
tances x1 and x2, respectively. 
	 To be able to explain a typical shape of the t – x graph, we 
investigated the behaviour of the seismic waves in the cavity 
region. The cavity represents a barrier to the propagation of the 
seismic waves and therefore, the refracted waves have to circum-
vent it. The circumvention of the seismic energy around the cavity 
is explained by using Huygen’s principle, where each point of the 
wavefront is the source of a new wave (Fig. 5). The points at the 
boundary of the cavity are also new source points. As can be seen, 
the rays belonging to the first arrivals are tangential to the cavity. 

THE INFLUENCE OF THE CAVITY ON THE FIRST 
ARRIVALS OF SEISMIC WAVES 
We investigated a two-layer geological model where the layer 
with a lower seismic velocity v1 is above the layer with a higher 
seismic velocity v2. The boundary between the layers is parallel 
to the surface and is at a depth h. The cavity is circular in shape 
with a radius r and positioned in the top layer with its centre at 
depth z. The horizontal distance of the centre of the cavity from 
the left edge of the profile is denoted by x (Fig. 3). The source of 
the seismic energy is positioned on the left-hand side of the pro-
file.

Numerical modelling
Numerical modelling with the eikonal equation is used to calcu-
late the traveltimes in the entire 2D profile where r   =  2 m, 
z  =  3  m, x  =  20  m, d  =  35  m, h  =  6  m, v1 = 300 m/s and 
v2  =  1500  m/s. The dimension of the extrapolation grid is 
4000  ×  4000. The calculated traveltimes are presented in two 
ways. Figure 4(a) depicts the traveltimes in the time-distance 
graph and Fig. 4(b) the propagation of the wavefronts. The time 
spacing used between two wavefronts is t  = 0.0009 s (Fig. 4b). 
Both presentations help to explain the propagation of seismic 
waves through the geological model.

Propagation of the refracted waves around the cavity 
The influence of the cavity on the t – x graph is visible between 
the distances x1 and x2 (Fig. 4). Outside this area, the graph exhib-
its the same behaviour as it does without the cavity. The area 
between x1 and x2 consists in two distinct regions. The first, 
between x1 and xp is characterized by a gradual increase in the 
slope, while the second, between xp and x2 is characterized by a 
gradual decrease. The point at which the slope of the graph 
changes discontinuously is designated xp and called the peak 

FIGURE 4

a) The t – x graph for the cavity in a two-layer model. Refracted waves 

are fastest beyond the crossover distance xc. The distances at which the 

influence of the cavity starts (stops) are x1 (x2), while xp is the peak point. 

b) The spread of the wavefront of the first arrivals. The last unaffected 

ray of the first arrival before the onset of the influence of the cavity is 

denoted by z1 and the first ray of the first arrival after the influence of the 

cavity ceases is denoted by z2. The rays exit the surface at distance x1 (for 

z1) and x2 (for z2).

FIGURE 3

A two-layer geological model. A cavity of radius r at a depth z. The 

velocities of propagation in the top and bottom layer are v1 and v2, respec-

tively. The horizontal distance of the centre of the cavity from the source 

I is denoted by x, the depth of the boundary between the layers by h and 

the profile length by d.
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and the traveltime at the peak point by relation: 

	(7)

The derivation of the formulas for the horizontal distance of the 
peak point and for the traveltime at the peak point is presented in 
the Appendix. 
	 An alternate picture can be obtained using the delay time ∆t. 
The delay time is the difference between the traveltime at the 
peak point (tp) and the traveltime at the same distance in the case 
with no cavity present (t1): 

	
(8)

	 The value of t1 is obtained using the well-known equation:

	 (9)

 
The delay time can thus be calculated as: 

	
(10)

DETERMINATION OF THE PARAMETERS OF 
THE CAVITY USING ANALYTICALLY DERIVED 
FORMULAS 
The cavity parameters are size and position. The size of the cir-
cular cavity is defined through its radius r. The position of the 
cavity is defined by the horizontal distance of its centre from the 
source x and the depth of the centre of the cavity z. The values of 
these parameters are determined from the first arrivals (i.e., by 
applying the t – x graph). Determination of the seismic velocities 
and the depth of the boundary between layers are standard pro-
cedures in refraction seismic methods and are not described in 
this paper. 

The radius of the cavity 
To establish the value of the radius r, the distances x1 and x2 need 
to be determined from the t – x graph. Simple geometry (Fig. 6) 
shows that: 

	
(11)

where θ is the refraction angle obtained from the relation 
sin θ = v1/v2.

The position of the cavity
Two measurements are used to determine the positional 
parameters of the cavity (x and z): one with the source of the 

	 For the circumvention of the cavity from the left, the source 
points at the edge of the cavity are placed between points A and 
C (for example, the source point B and the ray z3). The fact that 
the wave goes around the cavity from the left-hand side results in 
a longer first arrival time than if there was no cavity. On the t – x 
graph, this is evident through the continuously increasing slope 
of the graph between points x1 and xp. 
	 In the region between xp and x2, a decrease in the slope is 
evident. It results from a decrease in the traveltimes with the 
increasing distance from the source. Past distance xp, the first 
arrivals result from the circumvention of the cavity from the 
right-hand side. In this case, the source points at the edge of the 
cavity are placed between points D and F (for example, the 
source point E and the ray z4). The ray from point E (including 
the path from D to E) has a longer distance to traverse in com-
parison to the ray from point D. 
	 The peak point represents the distance at which waves that 
circumvent the cavity from the left and the right-hand sides 
arrive at the same time. The waves that emanate from points C 
and F arrive at the surface simultaneously. Both waves are repre-
sented by rays designated zp and exit the surface at distance xp 
(Fig. 5). 
	 The horizontal distance of the peak point is given by the rela-
tion: 

	
(6)

FIGURE 5

The propagation of seismic waves around the cavity. The boundary rays 

z1 and z2 are tangential to the cavity at points A and D. Other capital let-

ters represent new source points. The rays associated with those points 

are tangential to the edge of the cavity. Both rays zp arrive at the surface 

simultaneously. The dashed lines indicate the rays of the refracted waves 

that cannot form a part of the first arrival.
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or

	 (13)

Due to the symmetry of the centre of the cavity with respect to 
positions x1 and x3 or positions x2 and x4 (Fig. 8), the horizontal 
distance x is calculated using the following equations: 

	 (14)

or 

	 (15)

The peak points differ for sources from opposite sides of the cav-
ity (Fig. 7). Applying symmetry, the formula for the position of 
the peak point for the right-hand source is equivalent to equation 
(6), which is derived for the left-hand source: 

	 (16)

The depth can also be determined using either equation (7) or 
(10). In this instance, the time tp or delay time ∆t have to be read 
from the t – x graph and the radius r is given by equation (11). 
Finally, the only unknown variable, depth z, can be calculated 
using equations (7) or (10), respectively. 
	 Practical experience shows that it is difficult to obtain the 
precise value of tp or ∆t from the t – x graph. As a result, the more 
precise way for the determination of the unknown depth z is 
through the use of equation (12) or (13). 

NON-CIRCULAR CAVITY MODELS 
We have presented the possibility of using the seismic refraction 
method in the detection of circular cavities. However, there are 
various shapes of underground cavities in a natural environment 
for which the circular assumption is invalid (e.g., tunnels, mine 
workings, etc.). 

wave being to the left side of the cavity and the other to the 
right. The values x1, x2, x3 and x4 are obtained from the t – x 
graph (Fig. 7). All the distances are measured from the posi-
tion of the left-hand source, i.e., in the positive direction of 
the x-axis. Figure 8 depicts the last rays of the refracted wave 
unaffected by the cavity for a source from the left (z1) and 
from the right (z3). It also depicts the first unaffected rays of 
the refracted wave after the cavity for a source on the left (z2) 
and on the right (z4). The rays z1, z2, z3 and z4 arrive at the 
surface at distances x1, x2, x3 and x4, respectively. Figure 8 
shows that depth z can be calculated using the following equa-
tions: 

	 (12)

FIGURE 6

The determination of the cavity radius. The diagram shows the corre-

spondence of the boundary rays z1 and z2 with the t – x graph. The 

crossover distance is represented by xc. 

FIGURE 7

The t – x graph for the sources positioned on opposite sides of the seismic 

profile. The lengths x1 and x2 determine the area affected by the cavity for 

a source to the left, while x3 and x4 determine the area affected by the 

cavity for a source to the right. 

FIGURE 8

The determination of the cavity position. The boundary rays z1 and z2 (z3 

and z4) are unaffected by the cavity for a source to the left I1 (right I2). 
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the position of the centre of the cavity. Generally, the size of 
the cavity is related to the distance between the boundary rays 
z1 and z2 (Figs 9a, 9b and 9c). In the case of the circular cav-
ity, this distance is equal to the diameter of the cavity. 

TEST SITE RESEARCH 
The aim of this experiment was to examine the applicability of 
the developed technique in a real environment. An appropriate 
test site was located at the Trstenik gravel pit situated 10 km east 
of Zagreb, Croatia. The area consisted of alluvial sedimentary 
rocks formed through abrasive wear by the river Sava. This loca-
tion is continuously used for the extraction of gravel and sand. 
The location, consisting of a layer of dry sand underneath which 
is a layer of wet sand, was chosen for the testing (Fig. 11a). 
Preliminary tests (using the standard refraction seismic method) 
showed that the velocity of the longitudinal waves measured in 
the dry sand layer was 350 m/s and 1400 m/s in the wet sand 
layer, resulting in a refraction angle of 14.5°. The boundary 
between the two layers was at a depth of 2 m. We buried a metal 
cylindrical tank of 0.5 m radius at a depth of 1.2 m. The central 
axis of the cylinder was parallel to the surface and perpendicular 
to the seismic profile (Fig. 11a–c). The tank was filled with air. 
	 The transfer of seismic energy between the dry sand and the 
metal edge of the tank was negligible, as well as the energy 
transfer from the metal edge to the air. This is a consequence of 
the fact that the transmission coefficient is very small between 
media that have large contrasts in seismic velocity and density 
(Mussett and Khan 2000). 
	 The 11.5 m long seismic profile was covered by 24 geo-
phones at a spacing of 0.5 m (Fig. 12). The centre of the cavity 
was directly beneath the 12th geophone; 5.5 m from the left-hand 

	 Figure 9 shows three shapes of cavities: circular, quadratic 
and rectangular. The cavities are positioned in the upper layer 
of a two-layer geological model that is identical to the model 
described in the previous sections. The boundary rays z1 and z2 
exit the surface at distances x1 and x2. The first arrivals are pre-
sented in the t – x graph (Fig. 10). In all cases, a peak point is 
evident. The existence of a peak point is a strong indication of 
cavity presence and results from the circumvention of the cav-
ity by the seismic waves and not from the specific shape of the 
cavity. 
	 Figure 10 also shows that it is almost impossible to distin-
guish between the graphs for the circular and quadratic cavity 
because both cavities are in the same position and have simi-
lar dimensions (e.g., similar area and circumference). A small 
difference is visible in the case of the rectangular cavity, 
which has smaller dimensions than the circular and quadratic 
cavities. This results in a shorter circumvention and a shorter 
delay time at the peak point. 
	 The equations that determine the positional parameters are 
useful not only for circular cavities, as the equations calculate 

FIGURE 9

Cavities of different shapes in a two-layer model. a) Circular cavity of 

radius r = 2 m at a depth za = 3 m. b) Quadratic cavity with sides  

a = 3.2 m and the centre of the cavity at a depth zb = 3 m. c) Rectangular 

cavity with sides a = 3.2 m and b = 1 m and the centre of the cavity at a 

depth zc = 2.8 m. 

FIGURE 10

Three t – x graphs for circular (solid line), quadratic (dashed line) and 

rectangular (dotted line) cavities. The graphs are almost identical. A 

small difference is visible in the case of the rectangular cavity. 
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Experimental results and data analysis 
Figure 13 shows an example of a recorded seismogram that 
belongs to the 8th shot. The delay of the first arrival at geophone 
11 is observable. The recorded traveltimes at all geophones are 
shown on the t – x graph (Fig. 14). The 4th and 5th shot points are 
too close to the cavity for their influence to be observed on the 
graph. In these cases, the shape of the t – x graph is typical of a 
two-layer model. Some irregularity in the shape of the graphs is 
a consequence of lateral changes in homogeneities, which led to 
variations in the seismic velocity. The peak point is visible at the 
12th geophone for the 2nd shot and at the 13th geophone for the 1st 

and 3rd shots. All these sources are positioned to the left of the 
cavity. For the sources positioned to the right of the cavity, the 
peak point is visible at the 11th geophone for the 6th, 7th and 8th 

end of the seismic profile. We used a 24-channel seismograph 
with a 120 dB dynamic range. The resonant frequency of the 
vertical geophones was 100 Hz. The wavelength was l ≈  3.5 m, 
which gives the wavelength-diameter ratio l/2r ≈  3.5. The seis-
mic waves were produced through hammer impacts on a metal 
sheet placed on the surface. We used eight source points. The 
positions of the sources can be seen in Fig. 12. 

FIGURE 11

a) The location of the test site. The position of a buried tank is indicated by 

the arrow. b) A cylindrical metal tank was used as a cavity. c) Schematic 

diagram of the test site. The dry sand layer is situated above a wet sand 

layer. A cylindrical tank is positioned within the dry sand layer.

FIGURE 12

Positions of sources and geophones. Sources are represented by stars and 

geophones by squares.

FIGURE 13

A typical recorded seismogram. The seismogram belongs to the eighth 

shot. The ordinate axis represents time in milliseconds. The delay of the 

first arrival at geophone 11 is evident. 
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is because of a loss of homogeneity and decreased sand density in 
the vicinity of the cavity, resulting from the tank burying process. 
The velocity of the seismic waves in the disrupted sand near the 
cavity is lower than 350 m/s. This in turn causes a prolonged delay 
time for the wave circumventing the cavity.

CONCLUSIONS 
The refraction seismic method is a powerful tool for detecting 
underground cavities. A typical shape of the t – x graph and the 
occurrence of the peak point strongly indicate the presence of the 
cavity. Our technique also gives useful formulas for determining 
the size and position of a circular cavity, which could also be 
helpful for various non-circular cavity shapes. The practical 
application of this method was checked in a natural geological 
environment. In our experiment, a dry sand layer above the wet 
sand layer simulates a two-layer model. The interface between 
layers is defined by the ground water. The circular cavity is posi-
tioned in the upper layer. The experimentally obtained t – x graph 
has a visible peak point that indicates the presence of the cavity. 
Using data from this graph, we calculated the cavity parameters. 
The results are in good agreement with the real values. 
	 These results underlined both the diffculties that arise in 
experimental conditions as well as the modes for overcoming the 

shots. The shape of these six graphs indicates the presence of an 
underground cavity. The values of x1, x2, x3 and x4, which deter-
mine the area of the cavity’s influence, are given in Table 1. 

The radius of the cavity
Applying equation (11), the cavity radius for all six shots is calcu-
lated independently. In this equation, the difference x2 – x1 is 
replaced with the difference x3 – x4 in the case of the sources to the 
right of the cavity. This is a consequence of the symmetry depicted 
in Fig. 8. In all six cases, the calculated cavity radius r ≈ 0.5 m is 
in agreement with the radius of the buried cylinder (0.5 m).

The position of the cavity
The depth was obtained using equation (12) or (13) and the 
horizontal distance is obtained using equation (14) or (15). At 
least two sources positioned on opposite sides of the cavity are 
necessary to calculate the horizontal distance, x and the depth, z. 
We have used the average values of x1, x2, x3 and x4 in equations 
(12), (13), (14) and (15). The obtained averages are also given in 
Table 1. The calculated values of the parameters are: x = 5.4 m 
and z = 1.5 m. These results are also in good agreement with the 
real parameters (x = 5.5 m and z = 1.2 m). The difference 
between the real and calculated values in the case of the horizon-
tal distance is 0.1 m (error ≈ 2%) and ~0.3 m in case of the depth 
(error ≈ 15%). 

The delay time at the peak point
The delay time read from the graphs (Fig. 14) is ∆t = (0.8 ± 0.5) ms, 
where the estimated error of 0.5 ms is influenced by the noise as 
well as the resolution of the experimental data. A theoretical delay 
time for our model is 0.3 ms. The experimentally obtained travel-
times are larger than the theoretically calculated traveltimes. This 

TABLE 1

The experimental values of x1, x2, x3 and x4 as determined from Fig. 14. For 

all shots, the radius has the same value r = 0.5 m. The position of the cav-

ity (x = 5.4 m, z = 1.5 m) is determined by using average distances (x1, x3), 

and (x2, x4), where the influence of the cavity starts and stops, respectively. 

The maximal estimated error for parameters r, x and z is 0.25 m.

Shot x1 (m) x2 (m) x3 (m) x4 (m)

1 5 6 – –

2 5.5 6.5 – –

3 5.5 6.5 – –

4 – – – –

5 – – – –

6 – – 5.5 4.5

7 – – 5.5 4.5

8 – – 5.5 4.5

Average 5.3 6.3 5.5 4.5

FIGURE 14

The t – x graph for the test site measurements. The profile is covered with 

24 geophones at a spacing of 0.5 m. The first geophone is positioned at a 

distance x = 0. The peak points are observable at the12th geophone (x = 5.5 

m) for the 2nd shot and at the 13th geophone (x = 6 m) for the1st and 3rd shots 

(for the sources positioned to the left of the cavity). The peak points are 

observable at the 11th geophone(x = 5 m) for the 6th, 7th and 8th shots (for 

the sources positioned to the right of the cavity). The 4th and 5th shots are 

too close to the cavity and the influence of the cavity is not visible.
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APPENDIX

The position of the peak point 
We begin to observe the raypaths from point M (Fig. 15). Until 
reaching position M, the paths of the rays are the same. The 
circumvention time from the left is given as a sum of 
tME  +  tEA  +  tAC  +  tCP and from the right as a sum of 
tMN + tNB + tBD + tDP. These times are equal. In general, tXY desig-
nates the traveltime from point X to point Y. Taking into account 
the relation tME = tNB, it follows that: 

tEA + tAC + tCP = tMN + tBD + tDP. 	 (A1) 

The distance from point E to point A is designated as l and from 
M to N as c1. It is evident that tEA = l/v1 and tMN = c1/v2. As  
l/c1 =  sin θ, and v1/v2 = sin θ, the times tEA and tMN are equal. 
Thus, equation (A1) can be reduced to: 

tAC + tCP = tBD + tDP. 	 (A2) 

With this we have derived that the traveltimes of the waves cir-
cumventing the cavity are the same. The times used in equation 
(A2) refer to the propagation of the wave within the same medi-
um. Therefore, it is sufficient to observe the length of the rays. 
Due to mirror symmetry, in terms of the SP-axis, the side AC is 
equal to BD, as is the length CP to DP. From the above geometric 
consideration, the peak point is defined by: 

	 (A3)

The traveltime at the peak point 
To find the traveltime at the peak point, the length of the ray that 
circumvents the cavity is divided into line segments (Fig. 16). 

observed problems. One of the observed problems is the spacing 
of the geophones in relation to the cavity size. The influence of 
the cavity on the t – x graph is visible only if a sufficient number 
of geophones cover the region that yields a typical shape of the 
graph. A smaller spacing of the geophones yields more accurate 
results. However, a geophone spacing that is very small will 
result in no distinguishable difference in traveltimes between 
neighbouring geophones. It depends on the minimum time inter-
val that the instrument used can distinguish. In our case, the 
spacing of the geophones is equal to the radius of cavity. This 
yields acceptable results. Finally, our approach provides the pos-
sibility for developing our technique to analyse more complex 
geological models that could be the subject of future studies. 
Some of the future investigations will be concentrated on models 
with dipping or undulating interfaces between layers and on a 
non-homogeneous velocity model. This will be complemented 
with the studied refraction method in conjunction with other 
available methods. This is an important issue, as some existing 
geological structures perhaps yield t – x graphs similar to the 
ones observed in the presence of an underground cavity. A 
decrease in the number of possible interpretations is a continuous 
goal of research in the field of geophysics.
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FIGURE 15

The simultaneous arrivals of the waves at the peak point P. The circum-

vention of the cavity from the left is determined by ray tracing through 

points M-E-A-C-P while circumvention from the right is determined by 

ray tracing through points M-N-B-D-P. 

FIGURE 16

The ray from the source to the peak point through a series of line seg-

ments from the source I through the points R, M, T, A, C up to the peak 

point P.
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	 The total traveltime is thus equal to the sum of the traveltimes 
in each segment:

	 (A4)

equivalently:

	 (A4)
 

Figure A2 shows that:

	
(A5)

which gives the final expression (7) for tp. 
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